Sunday, May 27, 2018

Oracle ADF BC REST - Performance Review and Tuning

I thought to check how well ADF BC REST scales and how fast it performs. For that reason, I implemented sample ADF BC REST application and executed JMeter stress load test against it. You can access source code for application and JMeter script on my GitHub repository. Application is called Blog Visitor Counter app for a reason - I'm using same app to count blog visitors. This means each time you are accessing blog page - ADF BC REST service is triggered in the background and it logs counter value with timestamp (no personal data).

Application structure is straightforward - ADF BC REST implementation:

When REST service is accessed (GET request is executed) - it creates and commits new row in the background (this is why I like ADF BC REST - you have a lot of power and flexibility in the backend), before returning total logged rows count:

New row is assigned with counter value from DB sequence, as well as with timestamp. Both values are calculated in Groovy. Another bonus point for ADF BC REST, besides writing logic in Java - you can do scripting in Groovy - this makes code simpler:

Thats it - ADF BC REST service is ready to run. You may wonder, how I'm accessing it from blog page. ADF BC REST services as any other REST, can be invoked through HTTP request. In this particular case, I'm calling GET operation through Ajax call in JavaScript on client side. This script is uploaded to blogger HTML:


I'm using JMeter to execute performance test. In below example, REST GET request is invoked in infinite loop by 100 concurrent threads. This creates constant load and allows to measure how ADF BC REST application performs under such load:

ADF BC REST scales well, with 100 concurrent threads it does request processing in 0.1 - 0.2 seconds. If we would compare it to ADF UI request processing time, it would be around 10 times faster. This is expected, because JSF and ADF Faces UI classes are not used during ADF BC REST request. Performance test statistics for 100 threads, see Avg logged time in milliseconds:


1. Referenced Pool Size and Application Module Pooling

ADF BC REST executes request is stateless mode, REST nature is stateless. I though to check, what this mean for Application Module tuning parameters. I have observed that changing Referenced Pool Size value doesn't influence application performance, it works either with 0 or any other value in the same way. Referenced Pool Size parameter is not important for ADF BC REST runtime:

Application performs well under load, there are no passivations/activations logged, even when Referenced Pool Size is set to zero.

However, I found that it is still important to keep Enable Application Module Pooling = ON. If you switch it OFF - passivation will start to appear, which consumes processing power and is highly unrecommended. So, keep Enable Application Module Pooling = ON.

2. Disconnect Application Module Upon Release

It is important to set Disconnect Application Module Upon Release = ON (read more about it - ADF BC Tuning with Do Connection Pooling and TXN Disconnect Level). This will ensure there will be always near zero DB connections left open:

Otherwise if we keep Disconnect Application Module Upon Release = OFF:

DB connections will not be released promptly:

This summarises important points related to ADF BC REST tuning.

No comments: